Abstract

Over billions of years of evolution, viruses of eubacteria, bacteriophages, have developed unique proteins enabling them to arrest or inhibit critical bacterial cellular processes to augment phage reproduction. To address concerns of worldwide increase in antibiotic resistance, we have exploited the mechanisms of bacterial growth inhibition employed by phages to identify novel targets for antibiotic discovery. Using high-throughput bacteriophage genomics and functional genomics, we sequenced genomes of 43 phages that infect three pathogens and screened for open reading frames (ORFs) that inhibit bacterial growth. These phage-derived inhibitory ORFs were used as baits to systematically identify their interacting partners in bacteria. A variety of protein targets, biologically validated by phages, have been discovered. HTS campaigns were carried out against these targets. Small molecule leads with antibacterial activity were identified. By taking advantage of what we have learned from Nature, our technology platform plays an important role in the battle against antibiotic resistance.

Current Approaches to Antimicrobial Drug Discovery

- Screen candidate molecules in whole-cell-based assays for antibacterial activity
- Synthesize analogs of known drugs or candidates with improved characteristics
- Discover novel compounds against known targets with established mode of action
- Target-based drug discovery on phage-selected targets: PhageTech approach

Key advantages of PhageTech's proprietary drug discovery platform:
speed of analysis of small phage genomes
access to diversified targets

evolutionary validation of the bacterial target

PhageTech's Antimicrobial Discovery Tools

Screening for Antimicrobial Phage ORFs

Transform *S. aureus* with phage ORFs

Dot clones onto medium +/- inducer Identify antimicrobial ORFs under induced conditions

+ inducer

Induction of expression of phage ORF104 inhibits S. aureus growth

Success of PhageTech's Genomics and Functional Genomics Programs

Bacterial pathogen	Phages collected	Genomes sequenced	ORFs screened	Inhibitor families
S. aureus	150	27	964	31
S. pneumoniae	50	8	264	5
P. aeruginosa	70	11	500	13
Total	270	46	1728	49

ORF Affinity Approach to Target ID

Affinity chromatography of bacterial lysate over immobilized antimicrobial phage ORF

Tryptic peptide mapping, mass spectrometry of eluted bacterial proteins

Target identification

Target validation

Confirm ORF-target interaction Confirm target essentiality Determine target function

S. aureus R1 is the Target of ORF104

S. aureus target R1 was isolated using immobilized antimicrobial phage ORF104
R1 was identified as a target within the DNA synthesis pathway of S. aureus

R1 is Implicated in DNA Replication

Proteins and protein sub-assemblies involved in replication:

Hypothesis: inhibition of R1 activity with ORF104 should inhibit DNA replication

ORF104 Inhibits ³H-thymidine Incorporation

• Expression of ORF104 rapidly and selectively inhibits DNA synthesis in S. aureus

Essentiality Analysis of S. aureus Genes

Gene inactivation/ replacement

The R1 Gene is Essential in S. aureus

Gene inactivation/ replacement:

no viable clones obtained

• suggests that *R1* is an essential gene

Regulated gene Expression:

+ inducer - inducer

Wild-type S. aureus

growth of *R1 P_{inducible}* strain requires inducer
confirms essentiality of *R1* gene in *S. aureus*

S. aureus DNA and RNA Synthesis Targets Identified by Antimicrobial Phage ORFs

Antimicrobial ORF family	ORF size (aa)	Target (biosynthetic pathway of target)	Essentiality of target
ORF104 ORF16	52 297	R1 (DNA)	Essential
ORF25 ORF168 ORF240	58 74 58	R2 (DNA)	Essential
ORF78	71	R9 (DNA)	Essential
ORF67	198	R12 (RNA)	Essential

Screening Strategy

Small molecule compounds Proprietary HT screens: • ORF-target interaction enzymatic activity of target Actives Confirmatory, counter screening (n=2; 20 µM) **Confirmed** actives Dose response testing (n=4; 0.3-100 μ M) Hits In vitro functional assay, if available Confirmed hits Susceptibility testing, compound profiling Lead

FP Assay for ORF104-R1 Interaction

HTS FP Assay for ORF104-R1 Inhibitors

• Despite a high FP value (149 mP) for the free ORF tracer (7 kDa), R1 (39 kDa) increased the polarization of the tracer (to 223 mP) and permitted assay development

• Reproducibility at pilot scale was acceptable

0.5

125, 000 compounds were screened at 20 µM in a 20 µL 384-well FP assay

223 mP +/- 11.2%

149 mP +/- 3.5%

- Assay performance:
 - Z': 0.6
 - Z:
 - FP_{compounds}:
 - FP_{+ control}:
 - FP_{- control}:

• Cost:

- 223 mP +/- 5.5%
- Throughput:
- 7500 cpds/day (Tecan Genesis/TeMo + 1 operator) \$0.05/well

ΔFP = 74 mP

Hit Compounds Identified Against *S. aureus* Targets

Target	Assay	Library size	Actives	Confirmed actives	Hits IC ₅₀ ≤ 10 µM	Confirmed Hits MIC ≤ 16 µg/ml
R1 (DNA)	FP	125 K	1311	156	73	16
R9 (DNA)	TR-FRET	125 K	932	464	90	24
R12 (RNA)	TCA	125 K	830	153	73	36

Dose-Response Testing of Confirmed Actives Against ORF104-R1 by TR-FRET

Several compounds with IC₅₀≤10 µM were identified in the TR-FRET assay

Mechanism of Action Studies Using Target Titrating System

- Engineer S. aureus strain to express target under control of inducible promoter
- Test susceptibility to small molecule compounds with increasing concentrations of inducer (IPTG)
- Use antibiotics against known targets as controls

Control antibiotic [target] ([IPTG])

- Data suggest that compounds kill bacteria via intended target
- Confirmed hits are now the focus of SAR / chemistry programs

Summary

- PhageTech has sequenced the genomes of 47 phages of *S. aureus, S. pneumoniae,* and *P. aeruginosa*
- 49 families of phage-derived antimicrobial ORFs were identified
- Biologically validated targets, including those essential for DNA and RNA synthesis in *S. aureus*, have been discovered
- Proprietary ORF-target binding assays and enzymatic assays have been developed around these targets
- Diverse libraries of small molecules are being screened for inhibitors and selected compounds are being optimized
- Target titration systems have been developed and have been used to demonstrate mechanism of action
- Some lead compounds show promising profiles against both Gram-positive and Gram-negative bacteria (including drug resistant organisms) and will be evaluated in animal models